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A REATTACHING FREE SHEAR LAYER IN COMPRESSIBLE TURBULENT FLOW --

A COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS
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Moffett Field, California

and

G. S. Settles, % D. R. Williams,_ and S. M. Bogdonoff§

Princeton University

Princeton, N. J.

Abstract x' = distance along ramp measured from leading

edge (Fig. i)

An investigation of a two-dimenslonal, free

turbulent shear layer reattaching on an inclined sur- y =

face at Math 2.92 and at a high Reynolds number is

described. The test geometry is specifically

designed to isolate the reattachment process of a

hlgh-speed separated flow. A numerical solution of

the time-dependent, Reynolds-averaged, Navier-Stokes

equations for the entire flow field, employing a two-

equation eddy viscosity turbulence model, is pre-

sented. Detailed comparisons of prediction and

experiment are made in the free shear layer, at

reattachment, and in the developing boundary layer

downstream. These comparisons include mean surface

quantities as well as mean and fluctuating flow-

field quantities. Although the overall features of

this complex flow field are predicted, there are

several deficiencies in the numerical solution, par-

ticularly in the region downstream of reattachment.

Modifications of the turbulence model to correct 0 = density

these deficiencies are discussed.

Nomenclature

Cf - skin friction coefficient based on free-
stream conditions

k = turbulent kinetic energy, (u'---_+ v'---_+ w'--FT)/2

£ - turbulent length scale, _/_

H = _ch number

p = static pressure

R t - turbulence Reynolds number

u - velocity in x or x' direction

v = velocity in y direction

w - velocity normal to u and v

x = streamwise distance measured from separation

corner fFig. i)
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distance normal to model surface: measured

from plane of upstream flat plate in free

shear layer; measured from model surface on

ramp

_* = exponential damping term in turbulence model

= shear-layer or boundary-layer thickness

6* _ boundary-layer displacement thickness

O = boundary-layer momentum thickness

= molecular viscosity

_t = turbulent eddy viscosity

r = shear stress

= turbulent dissipation rate

Subscripts

max = maximum

w = wall conditions

= = free-stream conditions

Superscripts

( )' = fluctuating quantity

<( )> - rms value

Introduction

In the past several years, considerable

advances have been made in the prediction of com-

pressible viscous flow fields. For two-dimensional

flows, with both adverse and favorable pressure

gradients and even with small separated regions,

various computational methods employing a two-

equation eddy viscosity turbulence model do an ade-

quate Job of predicting the flow fields. 1'2 However,

the computation of flow fields in which there are

large separated zones has only met with limited
success. - Large disagreements between numerical

and experimental results are most prevalent in the

reattachment region and downstream, Unfortunately,

in these latter viscous compressible flow interac-

tions, boundary-layer separation and subsequent

reattachment are often intimately connected and it



is difficult to scrutinizeeither phenomenonby
itself.

A recentexperimentalinvestigationperformed
at PrincetonUniversity_hassuccessfullyisolated
thereattachmentprocessof ahigh-speedseparated
flow. Thisoffers a uniqueopportunityto test the
ability of anumericaltechniqueandits associated
turbulencemodelto correctlymodelthereattach_ent
regionanddownstreamboundary-layerredevelopment
withouttheadditionalcomplicationof modelingthe
separationprocessaswell. In this study,an
equilibriumturbulentboundarylayerdevelopedona
flat plate. Thelayerthenseparatedat a sharp
corner,forminga free shearlayerthat bridgeda
cavity to reattachuponaninclinedramp.Themea-
surementsincludeddetailedmeansurfaceandflow-
field dataaswell asmass-flowfluctuationdatain
the flow field.

Thispaperpresentsa detailedcomparisonof
numericalcalculationsandexperimentalresults for
the reattachingfreeshearlayerdescribedabove.
Thecalculationsemployedaresolutionsof thetime-
dependent,Reynolds-averaged,Navier-Stokesequa-
tions, usinga two-equationeddyviscosity turbu-
lencemodel.I Thesecomparisonstest theability to
calculatenotonly thereattachmentprocessand
downstreamboundary-layergrowth,but alsothedevel-
opmentof thesupersonicfreeshearlayer. These
threeproblemsare, in a sense,separateandprovide
a severetest of the turbulencemodelandthecom-
putationaltechniquesused.Basedonthesecompari-
sons,deficienciesin theturbulencemodelare
discussedandmodificationsto correctthesedefi-
cienciesareproposed.

Description of Experiment

The experiment was conducted in the Princeton

University 20 × 20-cm High Reynolds Number Super-

sonic Wind Tunnel at a free-stream Mach number of

2.92 and a unit Reynolds number of 6.7 × 107/m

(Ref. 5). A sketch of the test model is shown in

Fig. I. A turbulent boundary layer developed ini-

tially on the flat plate (22.9 cm long), then sepa-

rated over the sharp backward-facing step. The

resulting free shear layer bridged a 2.54-cm-deep

cavity and reattached on a plane ramp inclined 20 °

to the horizontal. The movable ramp was adjusted so
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Fig. 1 Flow geometry and computational domain.

that there was essentially no change in pressure or

flow direction when the boundary layer separated.

(The average value of the ratio of plate pressure to

cavity pressure over the test series was 1.04.)

Two-dimensionality was verified with surface streak

patterns and spanwise surface pressure and Preston

tube measurements.

The measurements included surface pressure and

skin friction, mean flow-field pressure and velocity

distributions, and mass-flow fluctuations throughout

the flow field. The skin friction data were

obtained with Preston tubes and verified by combined

wall-wake-law velocity-profile correlations. The

mean velocity data were obtained from pitot and

static pressure and total temperature measurements.

Hot-wlre anemometers were used to obtain the mass-

flow fluctuations. Further details of the experi-

mental techniques and results are contained in

Ref. 5.

Solutions to the Navier-Stokes Equations

The partial differential equations used to

describe the mean flow field are the time-dependent,

Reynolds-averaged Navier-Stokes equations for two-

dimensional flow of a compressible fluid. Restric-

tions on the equations include the perfect gas

assumption, constant specific heats, the Sutherland

viscosity law, and zero bulk viscosity. The Wilcox-

Rubesin I two-equation model was chosen for turbulence

closure. The use of an algebraic eddy-viscosity

turbulence model did not seem feasible for this

complex flow field. The problem is the a priori

specification of a length scale everywhere in the

flow field. This would be especially difficult in

the large recirculation zone and in the reattachment

region where the length scale must make the transi-

tion from a free shear layer to an attached boundary

layer. As a first effort to solve this flow field,

the use of the two-equation model, which calculates

its own length scale, seemed appropriate.

For the Wilcox-Rubesin two-equation model, the

flow-fleld equations are augmented by two additional

partial differential equations: one for the turbu-

lent kinetic energy k and another for the square

of the dissipation rate 2. The Wilcox-Rubesin

model uses the eddy-viscosity hypothesis; that is,

the Reynolds stress, turbulent heat-flux, and

kinetic-energy flux terms are assumed to be related

to the mean-flow velocity, temperature, and kinetic

energy gradients through an eddy transport coeffi-

cient that is simply added to the corresponding

molecular viscosity or transport coefficient. The

turbulent eddy viscosity _t is expressed in terms
of k and _:

k

_t = _* p

where y* is an exponential damping term that

depends on a turbulent Reynolds number, R t - p_/p.

This Reynolds number is based on a length scale of

the turbulence, _, defined as £ = _/_. The com-

plete equations, including the equations and con-

stants for the turbulence model, are described in

Ref. 2.

Numerical Method

The numerical procedure used here is the basic

explicit second-order, predictor-corrector,



finite-difference, time-splittingmethodof
MacCormack,6 modifiedby theefficient explicit-
implicit-characteristicalgorithmof Ref. 7. A
descriptionof this method,alongwith its adapta-
tion to multiequationturbulencemodels,is contained
in Refs.2 and 8.

Computational Domain

The computational domain is shown in Fig. I.

The upstream boundary was placed at the separation

corner to avoid possible difficulties there. A

mesh was developed that allowed a variable point

spacing in each coordinate direction. One set of

grid lines was placed normal to the free-stream

direction and the other parallel to the model sur-

face. The total mesh size was 90 points in the

streamwise direction and 82 points normal to the

model surface. In the streamwise direction mesh

spacing varied from 0.065 cm near the corner to

0.50 cm near the downstream boundary. In the direc-

tion normal to the surface an exponentially stretched

spacing was used near the wall followed by a uniform

spacing. The distance of the first y mesh point

from the model wall was selected small enough so

that the solutions are independent of spacing (typi-

cally within y+min _ Y _/_wO_/_w < 0.5).

Boundary Conditions

The boundaries of the computational mesh

extended in the vertical direction from the model

surface to the free stream and in the flow direction

from x = 0 to x' = 21 cm. The upstream boundary

conditions were prescribed by a combination of uni-

form free-stream conditions and the result of a

boundary-layer computation I along the flat-plate

surface. The boundary-layer program was run for a

distance that insured a match of the experimental

and numerical boundary-layer displacement thicknesses

at x = -2.54 cm. At the vertical wall below the

corner, the pressure was set equal to the free-stream

pressure (to match the experimental results), and

the temperature was set equal to the model wall tem-

perature. The vertical velocity was set equal to

zero and the horizontal velocity was set equal to

0.0005 u=. (When an inflow velocity of zero was used

a solution could not be obtained.) The downstream

boundary was positioned far enough aft so that all

of the gradients in the flow direction could be set

to zero. This boundary condition was verified by

the lack of any substantial change in the numerical

results when the location of the downstream boundary

was changed. At the model surface, no-slip boundary

conditions are applied along with a constant wall

temperature. Additional details concerning the

boundary conditions for the turbulence model near the

model surface are discussed in Ref. 2. The upper

boundary is specified by the free-stream conditions.

The free-stream disturbance level was set at

/k/u_ = 0.006, @hich amounts to <(Ou)'>/p=u_=0.025.

Results and Discussion

A map of the computed Mach contour lines in the

flow field is shown in Fig. 2. In agreement with

the experimental results, the incoming turbulent

boundary layer separates at the corner without turn-

ing, forming a free shear layer. This layer spreads

more rapidly into the cavity than into the outer,

supersonic flow, and reattaches on the ramp at a

point slightly below the geometric extension of the

flat plate onto the ramp surface. The average
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computed pressure on the cavity floor was 0.97 p=,

which agrees exactly with the experiment. Down-

stream of reattachment a new boundary layer develops

on the ramp. Detailed comparisons with the experi-

mental data are presented in two parts: the free-

shear-layer results and the reattachment and down-

stream boundary-layer results.

Free Shear Layer

The computed and experimental ve]ocity profiles

are compared at several streamwise locations in the

free shear layer in Fig. 3. Also shown is a compar-

ison of computed and experimental boundary-layer

profiles upstream of the separation point on the

flat plate (x = -2.54 cm). These upstream results

were computed using the boundary-layer code mentioned

earlier. In the shear layer the computed results are

in good agreement with the experiment for velocity

ratios greater than 0.5. However, for the lower

velocity ratios the computed results are substan-

tially greater than the data. This indicated that

the computed shear layer spread into the cavity

farther than the measured one, resulting in a larger

shear-layer thickness before reattachment. At the

lower values of velocity the viscous terms in the

momentum equation become relatively more important,

so any lack of validity in the turbulence model

equations is expected to cause larger differences
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Fig. 3 Comparison of computations and velocity pro-

file measurements in the free shear layer.
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between the computations and measurements in this

region. Apparently the turbulence model produces

too much diffusion here. At the last station com-

pared (k = 8.89 cm), the results show better agree-

ment than for the previous stations. The maximum

computed reverse velocity in the cavity is 0.17 u=;

however, experimental data were not obtained in this

region, and no comparison is possible.

The free-shear-layer spreading rates for both

the experimental and the computed results have been

calculated by defining the shear-layer thickness, 6,

as the distance between (u/u=) 2 = 0. I and 0.9

(ref. 9). The spreading rate was evaluated after

velocity profile similarity developed in the shear

layer, which required a distance downstream of sepa-

ration of 18 initial boundary-layer thicknesses in

the experiment and 22 thicknesses in the computation.

A comparison is shown in Fig. 4 along with a line

representing average values from previous high-

Reynolds-number, compressible, free-shear-layer

experiments. I° Although the computed profile shapes

were not in good agreement with experiment, the

growth rate of the width of the profile is in good

agreement.
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Fig. 4 Comparison of computation and free-shear-

layer spreading rate measurements.

The present computations provide a significant

improvement over previous computational results, l°

which predicted the incompressible value of the

spreading rate (d6/dx = 0.12) at supersonic Mach

numbers. More recent computations by Saffman II and

by Oh and Bushnell 12 also predict the correct com-

pressible spreading rates. Saffman's turbulence

model is an earlier version of the one used in the

present computations; in the model used by Oh and

Bushnell an additonal term modeled the pressure-

velocity correlation, which was a function of Mach

number. The present calculations require no addi-

tional terms for compressible flow. It is signifi-

cant that the present computational framework has

captured the physics of this compresslble spreading

phenomenon, even though the phenomenon is known to

violate Morkovin's hypothesls. 13

The computed and experimental rms mass-flow

fluctuations are compared at several streamwise

locations in the free shear layer in Fig. 5. Also

shown is a comparison upstream of the separation

point on the flat plate (x = -0.76 cm). To compare

the computed and measured turbulent fluctuations

several assumptions were made. The mass-flow
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Fig. 5 Comparison of computations and rms mass-flow

fluctuation profile measurements in the free shear

layer.

fluctuations were measured experimentally, and the

total turbulent kinetic energy was computed and con-

verted to rms mass-flow fluctuations, <(Ou)'>. This

latter computation was carried out as follows. It

was assumed that the ratio of the streamwise to

lateral to normal velocity fluctuations was 4:3:2,

and that the total temperature and pressure fluctua-

tions were negligible compared with the streamwise

velocity fluctuations. Thus the mass-flow fluctua-

tions become a function of the computed turbulent

kinetic energy, local Mach number, and density. I_

For adiabatic flows away from shock waves these

assumptions are reasonable I_ and should provide at

least a qualitative comparison of the experimental

and computed results. But the validity of these

assumptions is unknown within the shock-boundary-

layer interaction.

In general the measured mass-flow fluctuation

values are overpredlcted throughout the flow field.

In the lower part of the shear layer the data are

overpredicted by a factor of i0. This large over-

prediction in the cavity is the result of too much

diffusion in the turbulence-model equations at low

velocities, which leads to incorrect mean velocity

profiles, as shown in Fig. 3. At the last station

(x = 8.89 cm) the computed and experimental results

are at least qualitatively similar, though the

levels disagree.

To examine the rate of growth of the fluctua-

tion levels, both the measured and computed peak

values have been normalized by their upstream values

and plotted in Fig. 6. This comparison shows that

the measured normalized peak values do not increase

in magnitude until far downstream where velocity

profile similarity is reached ( x - 6 cm). The

computed normalized peak values increase gradually

until similarity is reached (x - 7 cm) and then

increase more rapidly downstream. The agreement

between the computed and measured values at the

downstream location could be fortuitous.

Since the mass-flow fluctuations were grossly

overpredicted in the lower part of the shear layer,

it may be instructive to examine the computed turbu-

lent length-scale distribution through the shear

layer. The computed values of the mean velocity

ratio and of the turbulent length scale, normalized
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Flg. 6 Comparison of computations and maximum rms

mass-flow fluctuation measurements in the free

shear layer.

by the shear-layer thickness, are shown in Fig. 7

for x = 6.35 cm. The results show that the length

scale increases continuously as y and the velocity

ratio decrease. It is believed that this behavior

is incorrect, and that the length scale should reach

a maximum in the shear layer and then decrease as y

decreases. However, there are no measurements

available to support this speculation. If so, then

any turbulence model improvements should be directed

toward the length scale or the dissipation equation.
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Fig. 7 Computed velocity and length scale profile

In the free shear layer, x = 6.35 cm.

Reattachment and Boundary-Layer Redevelomep_

Comparisons of the computed and experimental

surface pressure and skin-friction distributions on

the ramp are shown in Fig. 8. There is general

qualitative agreement between the computed and mea-

sured values but several important differences are

also noted. First, the computed reattachment point

is at 5.2 cm, and the experimental reattachment

point is at 6.76 cm. This difference is a result of

the computed shear layer extending too far into the

cavity, thus reattaching to the ramp surface too far

upstream. This also explains the differences between
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Fig. 8 Comparison of computations and measured sur-

face pressure and skin friction on the reattachment

ramp.

the predicted and measured pressure distributions.

The predicted pressure first increases upstream of

the experimental pressure increase, and requires

about a 12% greater distance to reach its final

value. Since the computed shear-layer thickness was

also about 12% larger than the experimental value,

these results are reasonable and in agreement with

the free interaction theory discussed in Ref. 5. At

the downstream end of the interaction the pressure

is correctly predicted, but the skin friction is

overpredicted by 20%.

Figure 9 compares the computed and experimental

development of the boundary-layer thickness, dis-

placement thickness, and momentum thickness down-

stream of reattachment. Although the correct trends

of all three thicknesses are predicted, the values

are too large. The boundary-layer thickness is over-

predicted by as much as 60%. This is because the

incoming shear layer is thicker than the experimental

shear layer and because the large overprediction

of turbulent kinetic energy and length scale in the

lower portion of the incoming shear layer also tends

to thicken the boundary-layer at reattachment. To

allow a comparison of computed and experimental flow

development downstream of reattachment despite this

difference in thickness, the distances from the wall

have been normalized by the local boundary-layer

thickness in the remaining figures.

The computed and experimental static pressure

profiles are compared at several streamwise loca-

tions in Fig. 10. The first station is located at

the experimental reattachment point. In the boundary

layer (y/6 < I), the predicted distributions show a

larger variation normal to the surface than do the

measured values. However, if the pressure increase

due to turbulent kinetic energy (2/3pk) were added

to the computed static pressure, the agreement with

the experiment would improve. This correction is up

to 15% for the present flow field. This was not

done because the experimental results were obtained

with a static pressure probe that is probably insen-

sitive to this increased kinetic pressure. In the

outer portion of the flow the calculated results

show the correct trends, and differences between the

computation and the experiment can be attributed to
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sure profile measurements downstream of reattachment.

the choice of 6 as a scaling parameter outside the

boundary layer.

Figure 11 compares the computed and experimen-

tal mean velocity profiles at reattachment and

downstream. The computed and measured profiles have

similar shapes, but the computation fails to predict

the correct development downstream. The fact that

the computed profiles fail to fill out as fast as

the measured profiles has also been shown for other

experimental test cases downstream of reattach-

ment. 2,_'Is This deficiency will be discussed in

greater detail later. The disagreement between the

two profiles at reattachment (x = 6.86 cm) is due in

part to the fact that the computed solution

reattached earlier (at 5.2 cm).

The computed and measured values of the rms

mass-flow fluctuations at reattachment and down-

stream are compared in Fig. 12. Considering the

assumptions made to convert the computed kinetic

energy to mass-flow fluctuations, the agreement is

reasonably good. In the boundary layer the two

downstream profiles are well predicted. The profile

at reattachment shows the same differences as in the

shear layer (Fig. 5). Outside the boundary layer,

both the computations and the experiment show the

same magnitude of increased fluctuations due to the

flow through the recompresslon shock wave (located

near y/6 = 1.8 for the last three stations).

However, the vertical extent of this increase is

overpredicted. The thickness of the computed recom-

presslon shock wave determined from the mean flow

quantities was less than 0.15 6 (see Fig. 2). At

x = 13.72 cm the 60% mass-flow fluctuation level

outside the boundary layer is calculated from a 12%

turbulent kinetic energy level.

At x = 11.68 and 13.72 cm the velocity pro-

files are poorly predicted, but the fluctuation

levels are well predicted. Therefore the computed

length scale must be in error. Experimental evi-

dence from spark shadowgrams suggests that this por-

tion of the flow field is dominated by large eddies, s

which in turn suggests a large increase in turbulence

length stale not accounted for in the computed

solution.

The computed values of the maximum length scale

in the boundary layer, normalized by the local

boundary-layer thickness, are shown in Fig. 13.

Also shown is the flat-plate value for an equilibrium

turbulent boundary layer. These results show a sig-

nificant increase over the flat-plate value in the

reattachment region and downstream, but the previous

comparisons with the experiment suggest that this is

not enough. To test this hypothesis, the flow field

was recomputed while the length scale was increased

arbitrarily by a factor of 3 in the middle portion

of the boundary layer downstream of reattachment.

This resulted in two changes in the computed results:

l) the boundary-layer thickness increased slightly,

and 2) the mean velocity profiles changed signifi-

cantly. A typical profile at x = 13.72 cm is shown

in Fig. 14. The recomputed velocity distribution

with the larger length scale is in much better

agreement with the experiment. The kinetic energy

distribution remained the same, as is shown in

Fig. 12.

These results demonstrate the need for an

improved length-scale prediction in the turbulence-

model equations. Perhaps the best way to approach

this problem is to perform a sensitivity analysis,

following Dwyer, 16 to find out which terms or con-

stants in the length scale or dissipation equation

need to be modified for improved predictions. This

is a formidable task and remains a subject for later

study. Also, additional experiments are planned by

the Princeton authors of this paper to obtain more

direct measurements of the turbulent length scales.
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Conclusions

A detailed experimental documentation of the

mean and fluctuating flow throughout a reattaching

free shear layer in compressible turbulent flow has

been made. These data have been used to assess the

validity of corresponding numerical computations and

to guide turbulence modeling changes. Numerical

solutions of the time-dependent, Reynolds-averaged,

Navier-Stokes equations employing a two-equation

turbulence model have been compared with the experi-

mental results. In general, the overall features of

this complex flow field have been predicted, although

there are several areas of the flow field in which

significant improvements in the turbulence modeling

are required if good agreement with experiment is to

be achieved.

For the free shear layer the numerical results

adequately predict the total spreading rate, which

is a significant achievement by itself. Also, good

agreement was obtained with the detailed velocity

profiles in the high-momentum portion of the layer.

However, poor agreement was obtained in the low-

momentum half of the shear layer, where the mean

velocity and the turbulent kinetic energy were over-

predicted. This suggests that the turbulence model

is producing too much diffusion and that the turbu-

lent length scale is too large in this region.

Because the initial spreading of the computed

shear layer into the cavity was too rapid, the com-

puted reattachment point was upstream of the experi-

mental point; as a result, the boundary layer was

too thick. Downstream of reattachment, good agree-

ment was obtained with the turbulent mass-flow fluc-

tuations, but the predicted mean velocity profiles

failed to develop as rapidly as the experimental

ones. This suggested that the computed length scale

was underpredicted in this region. An increased

length scale was employed in a second computation

and improved agreement with the experiment was

obtained.

Although the present investigation has not

provided an improved turbulence model, it has iso-

lated the area where improvements are needed,

namely the second turbulence model equation for the

dissipation rate, which determines the length scale.

Before such improvements can be made, a sensitivity

analysis must be performed. In the flow studied

here we have found two major areas of disagreement;

in one the length scale should be decreased and in

the other it should be increased. Thus, although

the need for turbulence model improvements is clear,

it is significant that at least some features of the

experimental flow field were predicted adequately.
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